Multivariate Statistical Process Control Using LASSO

نویسندگان

  • Changliang Zou
  • Peihua Qiu
چکیده

This paper develops a new multivariate statistical process control (SPC) methodology based on adapting the LASSO variable selection method to the SPC problem. The LASSO method has the sparsity property that it can select exactly the set of nonzero regression coefficients in multivariate regression modeling, which is especially useful in cases when the number of nonzero coefficients is small. In multivariate SPC applications, process mean vectors often shift in a small number of components. Our major goal is to detect such a shift as soon as it occurs and identify the shifted mean components. Using this connection between the two problems, a LASSO-based multivariate test statistic is proposed, which is then integrated into the multivariate EWMA charting scheme for Phase II multivariate process monitoring. It is shown that this approach balances protection against various shift levels and shift directions, and hence provides an effective tool for multivariate SPC applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A LASSO Chart for Monitoring the Covariance Matrix

Multivariate control charts are essential tools in multivariate statistical process control. In real applications, when a multivariate process shifts, it occurs in either location or scale. Several methods have been proposed recently to monitor the covariance matrix. Most of these methods use rational subgroups and are used to detect large shifts. In this paper, we propose a new accumulative me...

متن کامل

Simultaneous Monitoring of Multivariate-Attribute Process Mean and Variability Using Artificial Neural Networks

In some statistical process control applications, the quality of the product is characterized by thecombination of both correlated variable and attributes quality characteristics. In this paper, we propose anovel control scheme based on the combination of two multi-layer perceptron neural networks forsimultaneous monitoring of mean vector as well as the covariance matrix in multivariate-attribu...

متن کامل

Enforcing Co-expression in Multimodal Regression Framework

We consider the problem of multimodal data integration for the study of complex neurological diseases (e.g. schizophrenia). Among the challenges arising in such situation, estimating the link between genetic and neurological variability within a population sample has been a promising direction. A wide variety of statistical models arose from such applications. For example, Lasso regression and ...

متن کامل

Block Regularized Lasso for Multivariate Multi-Response Linear Regression

The multivariate multi-response (MVMR) linear regression problem is investigated, in which design matrices are Gaussian with covariance matrices Σ = ( Σ, . . . ,Σ ) for K linear regressions. The support union of K p-dimensional regression vectors (collected as columns of matrix B∗) are recovered using l1/l2-regularized Lasso. Sufficient and necessary conditions to guarantee successful recovery ...

متن کامل

Online Monitoring and Fault Diagnosis of Multivariate-attribute Process Mean Using Neural Networks and Discriminant Analysis Technique

In some statistical process control applications, the process data are not Normally distributed and characterized by the combination of both variable and attributes quality characteristics. Despite different methods which are proposed separately for monitoring multivariate and multi-attribute processes, only few methods are available in the literature for monitoring multivariate-attribute proce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009